edexcel 흧

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE
in Chemistry (6CH01) Paper 01
The Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 46656_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme
Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	B		(1)

Question Number	Correct Answer	Reject	Mark
2	C		(1)

Question Number	Correct Answer	Reject	Mark
3	D		(1)

Question Number	Correct Answer	Reject	Mark
4	D		(1)

Question Number	Correct Answer	Reject	Mark
5	B		(1)

Question Number	Correct Answer	Reject	Mark
6	B		(1)

Question Number	Correct Answer	Reject	Mark
7	B		(1)

Question Number	Correct Answer	Reject	Mark
8 a	A		(1)

Question Number	Correct Answer	Reject	Mark
8b	B		(1)

Question Number	Correct Answer	Reject	Mark
8 C	D		(1)

Question Number	Correct Answer	Reject	Mark
9	D		(1)

Question Number	Correct Answer	Reject	Mark
10	A		(1)

Question Number	Correct Answer	Reject	Mark
11	A		(1)

Question Number	Correct Answer	Reject	Mark
12	A		(1)

Question Number	Correct Answer	Reject	Mark
13	D		(1)

Question Number	Correct Answer	Reject	Mark
14	C		(1)

Question Number	Correct Answer	Reject	Mark
15	D		(1)

Question Number	Correct Answer	Reject	Mark
16 a	C		(1)

Question Number	Correct Answer	Reject	Mark
16 b	C		(1)

Question Number	Correct Answer	Reject	Mark
17	B		(1)

Section B

Question Number	Acceptable Answers	Reject	Mark
18a(i)	Any two of $\mathrm{O}^{+}, \mathrm{O}^{2+}, \mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{2+}$ (1) for each correct ion ALLOW $\begin{aligned} & { }^{16} \mathrm{O}^{+},{ }^{16} \mathrm{O}^{2+},\left({ }^{16} \mathrm{O}\right)_{2^{+}},\left({ }^{16} \mathrm{O}\right)_{2^{2+}} \\ & { }^{16} \mathrm{O}_{2}{ }^{+},{ }^{16} \mathrm{O}_{2}{ }^{2+} \end{aligned}$ $\mathrm{O}=\mathrm{O}^{+} / \mathrm{O}=\mathrm{O}^{2+} \text { for } \mathrm{O}_{2} \text { ions }$ Added mass numbers which describe a diatomic ion eg ${ }^{32} \mathrm{O}_{2}{ }^{+}$ Added round or square brackets	O^{-} O^{2-} Ions of O_{3} Incorrect mass numbers eg ${ }^{32} \mathrm{O}^{+}$ Added incorrect atomic numbers $\mathrm{Eg}{ }_{9}^{16} \mathrm{O}^{+}$	(2)

Question Number	Acceptable Answers	Reject	Mark		
18 a (ii)	The magnetic field/ electromagnet/ electromagnetic field OR Deflection by magnetic field ALLOW Deflection and magnetic field	Gravitational field deflector/deflection	(1)		
Electric field					
Vacuum and					
magnetic field				\quad	Detector/ detection
:---	\quad				
:---					

Question Number	Acceptable Answers	Reject	Mar k
18a(iii)	Two curved lines going towards the detector region with at least one hitting the detector ALLOW Section of straight line before curve starts if magnetic field position is not shown Line may go up very slightly before it curves down, probably to keep it clear of lower line. Labelling of paths depends on ions chosen: Heavier ion shown as less deflected OR O^{2+} more deflected than $\mathrm{O}_{2}{ }^{+}$ OR Ion with low er charge shown as less deflected ALLOW Ions with negative charges (as already penalised in (i)) If chosen ions are O^{+}and $\mathrm{O}_{2}{ }^{2+}$ they will not be separated - answer must make this clear	Straight lines Curvature away from detector/ concave curvature Line turning back upwards Species which are not ions of oxygen	(2)

Question Number	Acceptable Answers	Reject	Mark
18(b)	Look at final answer 16. 004 scores (2) 16.00445 scores Correct expression with incorrect final answer scores (1) $\begin{align*} & (16 \times 99.759+17 \times 0.037+ \\ & 18 \times 0.204) / 100 \\ & \text { OR } \\ & (16 \times 0.99759+17 \times 0.00037+ \\ & 18 \times 0.00204) \tag{1}\\ & \\ & =16.00445 \tag{1}\\ & =16.004 \\ & \text { Ignore units } \\ & \hline \end{align*}$	16.005	(2)

Question Number	Acceptable Answers	Reject	Mark
18 (c)	Isotopic composition of oxygen in air varies ALLOW The abundance of the isotopes of oxygen varies OR Oxygen standard was introduced before existence of oxygen isotopes was known gases	Air contains many isotopes Oxygen has many isotopes	(1)
OR Some scientists used a standard based on one isotope while others used a value based on mixture in natural abundance OR The answer is inaccurate unless a specified isotope is used OR 12C standard used because there are many 12C compounds which can be used to calibrate the mass spectrometer ALLOW It was difficult to obtain pure oxygen from air.	a whole number is better' ac standard gives		

Question Number	Acceptable Answers	Reject	Mark
$18(\mathrm{~d})$	No difference as both isotopes have the same number of protons (and electrons)/ the same nuclear charge IGNORE Same electronic configuration		(1)
	OR No difference as only number of neutrons is different		

(Total for Question 18 = 9 marks)

Question Number	Acceptable Answers	Reject	Mark		
$19(\mathrm{a})$	$\mathrm{Mg}(\mathrm{g}) \rightarrow \mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{(-)}$	Formation of Mg^{2+}	(2)		
	ALLOW $\mathrm{Mg}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{+}(\mathrm{g})$ Loss of electron to form $\mathrm{Mg}^{+} \quad(1)$				
	IGNORE (g) sign on electron	State symbols ALLOW Provided the equation involves magnesium, even if electron is added to the wrong side.	(1)	\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$19(b)$	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$		(1)
	ALLOW Capital s and/or p^{1}, subscripts $2 p_{x}{ }^{2} 2 p_{y}{ }^{2} 2 p_{z}{ }^{2} 3 p_{x}{ }^{1}$ $3 p_{y}{ }^{1} / 3 p_{z}{ }^{1}$ for $3 p_{x}{ }^{1}$		

Question Number	Acceptable Answers	Reject	Mark
*19(c)(i)	MP1 Mg to Al : Electron removed from Al is from a higher energy level (3p rather than 3s) ALLOW Electron removed in Al is (more) shielded (by 3s) IGNORE Outer electron is further from nucleus Full sub-shell is more stable than part filled sub-shell MP2 Al to Si : Si has one more proton than $\mathrm{Al} /$ has greater nuclear charge, and electrons removed in both cases are 3 p / same sub-shell / are equally shielded MP3 EITHER The attraction of the extra proton in Al is less than the effect of the higher energy level/ the shielding OR Electron removed from Si is closer to nucleus (than AI) ALLOW Silicon is smaller in size		(3)

Question Number	Acceptable Answers	Reject	Mark
19(d)	Four x round Si sharing one - with each Cl Seven \bullet round each Cl sharing one x with each Si ALLOW Reversed symbols		(2)

Question Number	Acceptable Answers	Reject	Mark
* 19(e)(i)	MP1 I^{-}/ anion becomes distorted / not spherical. May be shown in a diagram MP2 Mg^{2+} has high(er) charge and small(er) radius/ Mg^{2+} has high charge density MP3 Bonding in magnesium iodide has some covalent character OR Orbitals of Mg^{2+} and I^{-}overlap/ Mg^{2+} shares some of the I^{-} electrons OR Mg^{2+} and I^{-}ions are not completely separate	Iodine becomes distorted Just "electrons in outer shell are attracted" Atoms of Mg have a small (atomic) radius	(3)

Question Number	Acceptable Answers	Reject	Mark
$19(\mathrm{e})(\mathrm{ii})$	Experimental/ Born Haber cycle and theoretical/ calculated lattice energies are different	Just "Compare Experimental/ Born Haber cycle and theoretical/ calculated lattice energies"	(1)
	OR Experimental/ Born Haber cycle lattice energy is more exothermic/ more negative than theoretical/ calculated lattice energy	ALLOW Greater for more negative	Use of electron density map
IGNORE Comments about melting temperature			

(Total for Question 19 = 15 marks)

Question Number	Acceptable Answers	Reject	Mark
20(a)(i)	(Different) boiling temperatures/ boiling points	ALLOW Range of boiling temperatures	

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	Cracking: breaking of carbon chain (in a hydrocarbon/ alkane) to give shorter chain hydrocarbon(s)/ smaller molecules	Just "Breaking a hydrocarbon"	(2)
OR breaking a hydrocarbon/ alkane to "Breaking a give smaller molecules molecule"	Breaking a hydrocarbon to form branched chains or ring structures		
OR Breaking an alkane to give an alkene and (a smaller) alkane/ hydrogen	Reforming: converting straight chain to a (more) branched chain/ ring/ arene / aromatic compound ALLOW Specific examples IGNORE Makes more useful compounds Converting low octane (fuels) into high octane (fuels)	(1)	

Question Number	Acceptable Answers	Reject	Mark
20(a)(iii)	Look at final answer: $+71\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 3 marks -71/ 71 ($\mathrm{kJ} \mathrm{mol}^{-1}$) scores 2 marks -5825 (kJ mol ${ }^{-1}$) scores 1 mark Method: $\left.\begin{array}{rl} \mathrm{C}_{4} \mathrm{H}_{10} \\ \left(+13 / 2 \mathrm{O}_{2}\right) \\ -2877 \end{array}\right) \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{4}$ MP1 Labelled cycle OR use of $\Delta H=\sum_{\Sigma \Delta H_{\text {combustion }} \text { reactants } \text { products }}$ MP2 $\begin{equation*} \Delta H=(-2877-(-2058+(-890)) \tag{1} \end{equation*}$ MP3 $\begin{equation*} =+71\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$	Incorrect units	(3)

Question Number	Acceptable Answers	Reject	Mark
$20(\mathrm{a})$ (iv)	$\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+$	(1)
	OR	CH_{4}	
	$\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2}$	Charged products	
	$\mathrm{OR}^{\text {eg } \mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}}$		
	$\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$	Free radicals eg	
	ALLOW Breakdown of multiple butanes Ignore state symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
20 b (i)	Look at final answer: -2050 (kJ mol${ }^{-1}$) or anything correctly rounded from -2046.528 $(-2047,-2046.5,-2046.53)$ scores 3 marks +2050/2050(kJ mol ${ }^{-1}$) scores 2 marks Incorrect rounding scores 2 marks Correct value without sign scores 2 marks Energy transferred $=(200 \times 4.18 x$ 34.0) $\begin{equation*} =28424 \tag{1} \end{equation*}$ IGNORE Sign if given Mol pentane $=(1.0 / 72)=0.01389 /$ 0.0139 $\begin{align*} & \Delta H=-(-28424 \div(1 / 72 \times 1000)) \tag{1}\\ & =-2046.528\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{align*}$ ALLOW TE from MP 1 and 2 provided moles of pentane is not taken as 1 NOTE Use of 0.0139 mol gives -2044.9 ($\mathrm{kJ} \mathrm{mol}^{-1}$) giving 3 marks Use of 0.0138 mol gives -2059.7 ($\mathrm{kJ} \mathrm{mol}^{-1}$) giving 2 marks Use of 0.014 mol gives -2030.29 ($\mathrm{kJ} \mathrm{mol}^{-1}$) giving 2 marks Ignore SF except one or two		(3)

Question Number	Acceptable Answers	Reject	Mark		
20(b)(ii)	Incomplete combustion OR Loss of pentane by evaporation	Incomplete reaction Loss of water by evaporation	(1)		
	ALLOW Volume of water too large to heat evenly Water not stirred evenly Small change in mass inaccurate Heat capacity of /energy needed to heat calorimeter not included	Conditions not standard	Measuring errors	\quad	Pentane impure
:---	\quad				

Question Number	Acceptable Answers	Reject	Mark
20(b)(iii)	Pentane is very volatile/ has low boiling temperature so risk of explosion	Just "it is flammable" Has high flammability Vapour is toxic Combustion products/ CO toxic	IGNORE Reaction is very exothermic

Question Number	Acceptable Answers	Reject	Mark
$20(\mathrm{c})(\mathrm{i})$	$\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ Allow multiples Ignore state symbols even if incorrect	(1)	

Question Number	Acceptable Answers	Reject	Mark
20(c) (ii)	Bonds broken are four C-C twelve C-H eight $\mathrm{O}=\mathrm{O}$ Bonds made are ten $\mathrm{C}=0$ twelve $\mathrm{O}-\mathrm{H}$ ALLOW TE from (c)(i) If all five bonds are named but formulae not given eg oxygenoxygen bonds, max 1 If all five bonds are correctly identified by formula but numbers are incorrect or missing, max 1	O-O single bonds $\mathrm{C}-\mathrm{O}$ single bonds	(2)

Question Number	Acceptable Answers	Reject	Mark
20(c)(iii)	The (total) bond energy of the bonds formed is greater than the bond energy of the bonds broken	Just"more bonds are made than broken"	(1)
OR Energy released forming new bonds > energy needed to break old bonds	Answers referring to energy needed to make bonds	OR The sum of the bond energies of the products is greater than the sum of the bond energies of the reactants.	Energy contained by bonds in reactants> energy contained by bonds in products

(Total for question 20 = 16 marks)

Question Number	Acceptable Answers	Reject	Mark
21 (a)(i)	Species/ atom/ molecule/ particle with an unpaired electron	Just "with a single electron"	(1)
ALLOW An element with an unpaired electron IGNORE Reference to neutral species /lack of chargeA lone electron Chith an unpaired electron			

Question Number	Acceptable Answers	Reject	Mark
$21(\mathrm{a})(\mathrm{ii})$			
	Half arrows going from bond to Cl or just beyond and product $2 \mathrm{Cl} \bullet / \mathrm{Cl} \bullet+\mathrm{Cl} \bullet$	Cl without •	(1)

Question Number	Acceptable Answers	Reject	Mark
21 a (iii)	$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl} \bullet \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \bullet+\mathrm{HCl}$ ALLOW Structural formulae e.g. $\mathrm{CH}_{3} \mathrm{CH}_{3}$ OR displayed IGNORE Production of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ from $\mathrm{C}_{2} \mathrm{H}_{5} \bullet$ if first step is correct Propagation The second mark is independent of the first	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}$	(2)

Question Number	Acceptable Answers	Reject	Mark
$21 \mathrm{a}(\mathrm{iv})$	$\mathrm{C}_{2} \mathrm{H}_{5} \bullet+\mathrm{C}_{2} \mathrm{H}_{5} \bullet \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}$	Methyl or propyl radicals	(1)
	ALLOW Structural formulae e.g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \bullet$ $\bullet \mathrm{CH}_{3} \mathrm{CH}_{2}$ OR displayed IGNORE $\mathrm{Cl} \bullet+\mathrm{Cl} \bullet \rightarrow \mathrm{Cl}_{2}$		

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $21 \mathrm{~b}(\mathrm{i})$ | | | |

Question Number	Acceptable Answers	Reject	Mark
* 21b(ii)	MP1 σ bond remains ALLOW The product contains σ bonds only MP2 π bonds break because they are weaker (than σ bonds) ALLOW π bonds break because σ bonds are stronger MP3 Breaking the π bond results in carbocation intermediate / positively charged carbon forming OR π orbital overlap is lateral/ sideways /between parallel orbitals (making π bonds break/ weak) OR The σ bonds are much stronger (than the π bond) because of more effective (orbital) overlap		(3)

Question Number	Acceptable Answers	Reject	Mark	
21 (b)(iii)	From: Purple/ pink (solution) To: colourless	(1)	To brown	(2)
	Any orientation Don't penalise undisplayed OH Don't penalise bonds going to middle of undisplayed OH			Molecular/ structural/ skeletal formulae

Question Number	Acceptable Answers	Reject	Mark
21 (b) (iv)	Second mark depends on use of bromine/ solution of bromine for test.		(2)
	EITHER Test: add bromine water / Br_{2} (aq) ALLOW Add bromine in organic solvent/ bromine dissolved in hexane/ bromine in 1,1,1-trichloroethane (1)	From: brown/ red-brown/orange/ yellow To: colourless OR Add bromine / Br 2 (1) From: brown/ red-brown To: colourless	(1)

Question Number	Acceptable Answers	Reject	Mark
21(b) (v)			(4)
	Dipole on HBr Curly arrow from $\mathrm{C}=\mathrm{C}$ double bond to $\mathrm{H}^{\delta+}$ of HBr and curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br Correct intermediate with + charge Curly arrow from Br^{-}to C^{+}and formula of product ALLOW Curly arrow from anywhere on Br , including the - sign or lone pair (which is optional)	Half arrows	

Question Number	Acceptable Answers	Reject	Mark
21 (c)	Suitable catalyst nickel/ platinum/ palladium Ignore references to temperature, pressure, uv light	Use of $\mathrm{H}, \mathrm{H}^{+}$ Zeolite catalyst	(2)

(Total for Question 21 = 20 marks)
TOTAL FOR PAPER $=80 \mathrm{MARKS}$

